
On the question of temperature transformations under Lorentz and Galilei boosts

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 382003

(http://iopscience.iop.org/1751-8121/41/38/382003)

Download details:

IP Address: 171.66.16.150

The article was downloaded on 03/06/2010 at 07:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/38
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 382003 (8pp) doi:10.1088/1751-8113/41/38/382003

FAST TRACK COMMUNICATION

On the question of temperature transformations under
Lorentz and Galilei boosts

Geoffrey L Sewell

Department of Physics, Queen Mary, University of London, Mile End Road, London E1 4NS, UK

Received 23 May 2008
Published 22 August 2008
Online at stacks.iop.org/JPhysA/41/382003

Abstract
We provide a quantum statistical thermodynamical solution of the long standing
question of temperature transformations of uniformly moving bodies. Our
treatment of this question is based on the well-established quantum statistical
result that the thermal equilibrium conditions demanded by both the zeroth
and second laws of thermodynamics are precisely those of Kubo, Martin and
Schwinger (KMS). We prove that, in both the special relativistic and non-
relativistic settings, a state of a body cannot satisfy these conditions for different
inertial frames with non-zero relative velocity. Hence a body that serves as a
thermal reservoir, in the sense of the zeroth law, in an inertial rest frame cannot
do so in a laboratory frame relative to which it moves with non-zero uniform
velocity. Consequently, there is no law of temperature transformation under
either Lorentz or Galilei boosts, and so the concept of temperature stemming
from the zeroth law is restricted to states of bodies in their rest frames.

PACS numbers: 02.30.Tb, 03.30.+p, 03.65.Fd, 05.30.−d

1. Introduction

The question of how temperature transforms under Lorentz boosts was first addressed by
Einstein [1] and Planck [2] on the basis of a special relativistic extension of classical
thermodynamics. On that basis, they argued that the uniform motion of a body leads to
a reduction of its observed temperature by the Lorentz contraction factor. In other words, if T0

is the temperature of a body in its inertial rest frame K0, which moves with uniform velocity
v relative to a laboratory frame, KL, then its temperature, TL, as viewed in KL, is given by the
formula

TL = (1 − v2/c2)1/2T0. (1.1)

This formula remained unchallenged until, many years later, Ott [3] argued, on the basis
of a different special relativistic extension of classical thermodynamics, that the relationship
between TL and T0 went the other way, i.e. that

TL = (1 − v2/c2)−1/2T0. (1.2)
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Subsequently, Landsberg [4] proposed yet another special relativistic extension of
thermodynamics, wherein temperature is Lorentz invariant, i.e. TL = T0. These different
approaches to the relativistic extension of thermodynamics led to further treatments and
comments on the situation by a number of authors, e.g. those of [5–7]. In particular, Van
Kampen [5] provided a very clear analysis of the assumptions underlying the works of [1–4]
and proposed yet another, relativistically covariant formulation of classical thermodynamics.

At this stage, we remark that no statistical physical considerations were invoked in the
works [1–7], all of which were based on relativistic extensions of the first and second laws
of classical thermodynamics. Subsequently, Landsberg and Matsas [8] argued, on the basis
of a quantum statistical treatment of a particular model, that there is no general law of
transformation of temperature under Lorentz boosts. Specifically they showed that if K0 and
KL are two inertial frames as described above, then the coupling of a two-level monopole M,
at rest in KL, to black body radiation, B, with Planck spectrum in K0, drives M into a terminal
state that is not one of thermal equilibrium for any temperature that varies continuously with
the relative velocity v. Thus, leaving aside the issue of continuity, B behaves as a thermal
reservoir only when referred to its rest frame. This result is in line with views expressed earlier
by Landsberg [4].

The object of the present communication is to establish a general version of this result,
not only for the relativistic case but also for the non-relativistic one, on the basis of a
rigorous, model-independent, quantum statistical treatment of the response of a small test
system (thermometer!) to its coupling to a moving thermal reservoir. A key ingredient of
this treatment is the characterization of thermal equilibrium states of an arbitrary conservative
quantum dynamical system by the Kubo–Martin–Schwinger (KMS) condition [9], which may
formally be expressed, in units where h̄ = kBoltzmann = 1, as1

〈A(t)B〉 = 〈BA(t + iβ)〉, (1.3)

where 〈 〉 denotes expectation value, A and B are arbitrarily chosen observables, A(t) is the
evolute of A at time t and β is the inverse temperature. This condition serves to extend
the definition of canonical equilibrium states to infinite systems, which represent natural
idealizations of thermal reservoirs, and provides a quantum statistical basis of the zeroth, first
and second laws of thermodynamics (cf [10, chapter 5] and works cited there). In particular,
Kossakowski et al [11] proved that the KMS condition is precisely that for which a large
(infinite) system, �, behaves as a thermal reservoir, in the sense of the zeroth law, i.e. it is the
necessary and sufficient condition under which � drives any finite test system to which it is
weakly and transitively2 coupled into a terminal equilibrium state.

On applying this result to the statistical thermodynamics of moving bodies, we see that
if � is in an equilibrium state in the inertial frame K0 and if S is a finite test system at rest
in another inertial frame KL, then � will act as a thermal reservoir for S, in the sense of
the zeroth law, if and only if its state satisfies the KMS conditions relative to both K0 and
KL, i.e. if the versions of equation (1.3) relative to these frames are fulfilled for some inverse
temperatures β0 and βL, respectively. However, we shall prove that this is not possible in
either the special relativistic or the non-relativistic setting. Specifically, we shall show that,
in either setting, a (mixed) state cannot satisfy KMS conditions, whether for the same or
for different temperatures, relative to two inertial frames whose relative velocity is non-zero.
Hence, we conclude that a system that is in an equilibrium state relative to K0 will not behave
as a thermal state, in the sense of the zeroth law, relative to KL. Thus there is no law of

1 The mathematically rigorous form of this condition will be specified in section 2.
2 The transitivity condition is that the coupling serves to provide transitions, whether direct or indirect, between all
eigenstates of the small system.
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temperature transformation under either Lorentz or Galilei boosts, and so the very concept of
temperature is restricted to systems in equilibrium in their rest frames.

We present our treatment within the operator algebraic framework of quantum statistical
physics, pedagogical accounts of which are provided by [10, 12, 13]. In section 2, we
formulate the KMS condition in general operator algebraic terms, specifying there both its
mathematical and its thermodynamic significance. In section 3, we prove our main result,
namely that a system whose dynamics is either Lorentz or Galilei covariant cannot support a
state that satisfies the KMS condition relative to different inertial frames with non-zero relative
velocity. We briefly summarize our conclusions about this result in section 4.

2. Preliminaries on algebraic structure and the KMS condition

A conservative quantum dynamical system, �, comprises a triple (A, α,S), where [10, 12, 13]

(a) A is a C�-algebra whose self-adjoint elements represent its bounded observables,
(b) α is a weakly continuous representation of the additive group R in Aut(A), the

automorphisms of A, representing the dynamics of �, and
(c) S is a folium of linear, normalized, positive functional on A, representing the states of �.

Thus, the evolute of an observable A at time t is α(t)A and the expectation value of A for
the state φ is φ(A), which we also denote by 〈φ;A〉.
Definition 2.1. A state φ is said to satisfy the KMS condition for inverse temperature β

if, for each A,B in A, the function t (∈ R) → F(t) := 〈φ;Bα(t)A〉 extends to the strip
{z ∈ C|Im(z) ∈ [0, β]}, where it is analytic in the interior and continuous on the boundaries,
and where

F(t + iβ) = 〈φ; [α(t)A]B〉 and F(t) = 〈φ;Bα(t)A〉 ∀ t ∈ R. (2.1)

This condition is taken to characterize the thermal equilibrium states of � on the following
grounds (cf [10] and works cited therein):

(i) It implies the stationarity of the state φ.
(ii) It corresponds to dynamical and thermodynamical stability conditions that are the natural

desiderata for equilibrium states.
(iii) It is just the condition on φ for which an infinite system � behaves as a thermal reservoir,

in the sense of the zeroth law of thermodynamics.

KMS condition and modular automorphisms. An important mathematical development in the
theory of operator algebras has thrown further light on the KMS condition. This development,
due originally to Tomita [14] and reformulated by Takesaki [15], establishes that, for any
faithful normal state ψ on a W�-algebraM, there is a unique one-parameter group {τ(t)|t ∈ R}
of automorphisms ofM that satisfy the KMS condition, as given by definition 2.1, with β = 1.3

These are termed the modular automorphisms for the state ψ and are characterized by the
KMS-type formula

〈ψ; [τ(t)M]N〉 = 〈ψ;Nτ(t + i)M〉 ∀ t ∈ R, M,N ∈ M. (2.2)

In order to relate the above C�-description of the KMS conditions to these automorphisms,
we first recall that, by the Gelfand–Neumark–Segal (GNS) construction, a state φ on the C�-
algebra A induces a representation πφ of A in a Hilbert space Hφ with cyclic vector 	φ . In

3 This result is very simple in the case of a finite system where M is the algebra of bounded operators in a Hilbert
space H. For in this case, a faithful normal state ψ corresponds to a density matrix of the form exp(−H), where H
is a lower bounded self-adjoint operator; and the modular automorphisms τ(t) are then implemented by the unitaries
exp(iHt).
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particular, if φ is stationary, the automorphisms α are implemented by a unitary representation
Uφ of R in Hφ , as defined by the formula

Uφ(t)πφ(A)	φ = [πφ(α(t)A)]	φ ∀ t ∈ R, A ∈ A. (2.3)

Further, the state φ has a canonical extension φ̂ to the W�-algebra πφ(A)′′, defined by the
formula

φ̂(R) = (	φ,R	φ) ∀ R ∈ πφ(A)′′. (2.4)

Moreover, in the case where φ is stationary, the dynamical automorphism group α has a
canonical extension αφ to πφ(A)′′, that is implemented by the unitaries Uφ , i.e.

αφ(t)R = Uφ(t)RUφ(−t) ∀ t ∈ R, R ∈ πφ(A)′′ (2.5)

and, in particular,

αφ(t)[πφ(A)] = πφ(α(t)A) ∀ A ∈ A, t ∈ R. (2.6)

Thus, by definition 2.1 and equations (2.4)–(2.6), if φ satisfies the KMS condition with respect
to the automorphism group α at inverse temperature β, then φ̂ fulfils the corresponding KMS
condition with respect to the automorphisms αφ of πφ(A)′′, i.e.

〈φ̂; [αφ(t)R]S〉 = 〈φ̂; Sαφ(t + iβ)R〉 ∀ t ∈ R, R, S ∈ πφ(A)′′. (2.7)

Moreover, it has also been established [9], on the basis of the KMS condition on φ, that the
vector 	φ is cyclic not only for the algebra πφ(A)′′ but also for its commutant πφ(A)′. Thus
it is both cyclic and separating for πφ(A)′′, which signifies that φ̂ is a faithful normal state on
the latter algebra. Consequently, it follows from a comparison of equations (2.2) and (2.7),
with M = πφ(A)′′ and ψ = φ̂, that the dynamical group αφ is the time-rescaled version of
the modular group τ given by the formula

αφ(t/β) = τ(t) ∀ t ∈ R. (2.8)

3. Statistical thermodynamics of moving bodies

We take our generic model of a reservoir to be an infinitely extended quantum system, �,
whose properties we now treat in both the special relativistic and the non-relativistic settings.

3.1. The special relativistic model

We assume that the relativistic system � occupies the Minkowski spacetime X. Employing
units for which c = 1, we denote the spacetime coordinates of a point x of X, relative to an
inertial frame K, by {xµ|µ = 0, 1, 2, 3}, with x0 = t . Thus, defining u to be the unit vector
along the time direction, i.e.

u = (1, 0, 0, 0), (3.1)

the time coordinate relative to K is

t = x.u := xµuµ. (3.2)

We define the transformations T (a) and L(v) of X corresponding to spacetime translation by
a and velocity boost by v(∈ (−1, 1)) along Ox1, respectively, by the formulae

T (a)x = x + a (3.3)

and

L(v)x =
(

x0 − vx1

(1 − v2)1/2
,

x1 − vx0

(1 − v2)1/2
, x2, x3

)
. (3.4)
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It follows from these formulae that

L(v)T (a)L(−v) = T (L(v)a) ∀ a ∈ X, v ∈ (−1, 1). (3.5)

In particular, by equations (3.1), (3.4) and (3.5), the Lorentz transform of the time translation
T (tu) is given by the formula

L(v)T (tu)L(−v) = T (tu′), (3.6)

where

u′ = L(v)u = (1 − v2)−1/2(1,−v, 0, 0), (3.7)

which is just the unit time vector in the reference frame K ′ that moves with velocity v along
Ox1 relative to K. We shall henceforth assume that v �= 0.

We employ the scheme of Haag and Kastler [16] for the operator algebraic formulation of
the model of �. Thus, we start by definingL to be the set of all bounded, open subsets of X, and
we assign to each such subset 
 a C�-algebra A
, the algebra of bounded observables for the
spacetime region 
. We assume that this satisfies the following two canonical requirements
of isotony and local commutativity (Einstein causality!), i.e. that

(a) A
 is isotonic with respect to 
, i.e. A
 ⊂ A
′ if 
 ⊂ 
′; and
(b) if 
 and 
′ have spacelike separation, then the elements of A
 and A
′ intercommute.

In view of the isotony property (a), the union, AL, of the local algebras A
 is a normed
�-algebra, whose norm completion is a C�-algebra A. We take A to be the algebra of the
quasi-local bounded observables of �. We then define the state space S to comprise the
positive, normalized, linear functionals on A. We assume that the dynamics of the system is
Poincare covariant and thus that the Poincare group P is represented by automorphisms of A.
In particular, spacetime translations and Lorentz boosts are represented by homomorphisms
ξ and λ of the additive groups X and R, respectively, in Aut(A) that satisfy the canonical
analogue of equation (3.5), namely

λ(v)ξ(a)λ(−v) = ξ(L(v)a) ∀ a ∈ X, v ∈ R. (3.8)

The subgroup of ξ(X) corresponding to time translations relative to K is α(R), with

α(t) = ξ(tu) ∀ t ∈ R (3.9)

and u is the unit time vector defined by equation (3.1). It follows immediately from
equations (3.7)–(3.9) that

λ(v)α(t)λ(−v) = α′(t) := ξ(tu′) ∀ t ∈ R, v ∈ R, (3.10)

which signifies that α′(t) is the Lorentz transform of α(t) corresponding to the velocity
boost v and is therefore the automorphism representing time translation by t in the reference
frame K ′.

By definition 2.1 and equation (3.9), the KMS condition on a state φ, relative to the frame
K at inverse temperature β, is that

〈φ; [ξ(tu)A]B〉 = 〈φ;Bξ((t + iβ)u)〉 ∀ t ∈ R, A,B ∈ A. (3.11)

Correspondingly, the KMS condition on φ, relative to the frame K ′ at inverse temperature β ′,
is that

〈φ; [ξ(tu′)A]B〉 = 〈φ;Bξ((t + iβ ′)u′)〉 ∀ t ∈ R, A,B ∈ A. (3.12)

Definition 3.1. We say that spacetime translations act non-trivially in the GNS representation
πφ of this state if, for any non-zero element a of X, there exists some A ∈ A and s ∈ R for
which πφ(ξ(sa)A) �= πφ(A).

5
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Proposition 3.1. Let φ be a state on A that satisfies the KMS condition relative to the frame
K at inverse temperature β. Then, assuming that spacetime translations act non-trivially in
the GNS representation of φ, there is no inverse temperature β ′ for which this state satisfies
the KMS condition relative to the frame K ′.

Proof. Assume that φ satisfies both of the KMS conditions (3.11) and (3.12). Then it
follows from equation (2.8) that the canonical extensions αφ(R) and α′

φ(R) of α(R) and
α′(R), respectively, to πφ(A)′′ are related to the (unique) modular automorphism group τ(R)

for φ by the formula

αφ(t/β) = α′
φ(t/β ′) = τ(t) ∀ t ∈ R. (3.13)

Hence, by equations (2.6), (3.9), (3.10) and (3.13),

πφ(ξ(tu/β)A) = πφ(ξ(tu′/β ′)A) ∀ A ∈ A, t ∈ R. (3.14)

On replacing t by β ′t and A by ξ(−tu′)A in this equation, we see that

πφ(ξ(t (β−1β ′u − u′))) = πφ(A) ∀ A ∈ A, t ∈ R. (3.15)

Consequently, by the assumption that spacetime translations act non-trivially in the GNS
representation of φ,

β ′u = βu′. (3.16)

By equations (3.1) and (3.7), this last equation signifies that

β ′ = β(1 − v2)−1/2 and vβ(1 − v2)−1/2 = 0. (3.17)

In view of the finiteness of β and the condition that |v| < 1, the second of these equations
cannot be satisfied for non-zero v. This completes the proof of the proposition. �

Comment. This proposition, when combined with the result of [11], establishes that, if � is
in thermal equilibrium relative to a rest frame K, then it does not satisfy the demand of the
zeroth law relative to a moving frame K ′. Hence there is no temperature transformation law
under Lorentz boosts.

3.2. The non-relativistic model

For the non-relativistic model � (cf [9, 10, 12, 13]), the spacetime is X × R, where now
X is a Euclidean space and the dynamics is Galilei, rather than Poincare, covariant. Thus,
spacetime points are denoted by (x, t), where x(∈ X) and t (∈ R) are their spatial and temporal
components, respectively. We denote by S(a), T (b) and G(v) the transformations of X × R
corresponding to space translation by a, time translation by b and vector-valued velocity boost
v, respectively, as given by the formulae

S(a)(x, t) = (x + a, t), (3.18)

T (b)(x, t) = (x, t + b) (3.19)

and

G(v)(x, t) = (x − vt, t). (3.20)

Thus S, T and G are representations of the additive groups X, R and X, respectively. It follows
from these formulae that S(a) and T (b) intercommute and that

G(v)T (b)G(−v) = S(−vb)T (b) ∀ v ∈ Y, t ∈ R. (3.21)

6
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The C�-algebra, A, of quasi-local bounded observables is formulated by the prescription
of section 3.1, but now with X a Euclidean space. We assume that space translations, time
translations4 and Galilei boosts are represented by homomorphisms σ, α and γ of the additive
groups X, R and X, respectively, into Aut(A). Thus, assuming that the dynamics of the system
is Galilei covariant, the intercommutativity of S(a) and T (b) implies that of σ(x) and α(t),
and the following canonical analogue of equation (3.21) is satisfied:

γ (v)α(t)γ (−v) = α′(t) := σ(−vt) α(t). (3.22)

Thus, α′(t) is the Galilei transform of α(t), corresponding to the velocity boost v. In other
words, as α represents the time translations relative to a rest frame K,α′ represents them
relative to an inertial frame K ′ that moves with velocity v. We shall henceforth assume that
v �= 0.

We now proceed to the following non-relativistic analogues of definition 3.1 and
proposition 3.1.

Definition 3.2. We say that spacetime translations act non-trivially in the GNS representation
πφ of a state φ on A if, for any non-zero element (a, b) of X × R, there exists some A ∈ A
and s ∈ R for which πφ(σ (sa)α(sb)A) �= πφ(A).

Proposition 3.2. Let φ be a state on A that satisfies the KMS condition relative to the frame
K at inverse temperature β. Then, assuming that spacetime translations act non-trivially in
the GNS representation of φ, there is no inverse temperature β ′ for which this state satisfies
the KMS condition relative to the frame K ′.

Proof. Assume that φ satisfies the KMS conditions relative to K and K ′ at inverse temperatures
β and β ′, respectively. Then it follows from definition 2.1 and equations (2.6), (2.8) and (3.22)
that

πφ(α(t/β)A) = πφ(σ (−vt/β ′)α(t/β ′)A) = τ(t)(πφ(A)) ∀ A ∈ A, t ∈ R, (3.23)

where τ(R) is the modular automorphism group for the canonical extension φ̂ of φ to πφ(A)′′.
On replacing A by α(−t/β)A in this equation, we see that

πφ(A) = πφ(σ (−vt/β ′) α(t[(β ′)−1 − β−1])A) ∀ A ∈ A, t ∈ R. (3.24)

Consequently, by the assumption that spacetime translations act non-trivially in the GNS
representation of φ, it follows from this equation and definition 3.2 that

v/β ′ = 0 and β ′ = β. (3.25)

Since these equations cannot be satisfied under our assumptions that β is finite and v is
non-zero, it follows that the state φ cannot satisfy the KMS conditions relative to both
K and K ′. �

Comment. This proposition, when combined with the result of [11], establishes that, if � is
in thermal equilibrium relative to a rest frame K, then it does not satisfy the demand of the
zeroth law relative to a moving frame K ′. Hence there is no temperature transformation law
under Galilean boosts.

4 We remark that this assumption concerning time translations is not always satisfied by non-relativistic models and
that, more generally, their evolution is of the W�-dynamical kind [17, 18]. However, we employ the C�-dynamical
description here for simplicity, noting that a parallel treatment, which yields the same results, can be carried through
on the W� scheme of [18].

7
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4. Concluding remarks

We have provided a general, quantum statistical treatment of the thermodynamics of moving
bodies, that is based on

(1) the Poincare or Galilei covariance of the dynamics;
(2) the characterization of thermal equilibrium by the KMS condition; and
(3) the simple relationship of that condition to the modular theory of Tomita and Takesaki.

On this basis, which underpins the zeroth law as well as the first and second ones, we have
shown here that there is no temperature transformation law under either Lorentz or Galilei
boosts. Consequently, in both the special relativistic and the non-relativistic settings, the
concept of temperature, stemming from the zeroth law, is restricted to equilibrium states of
systems in their rest frames.
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